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In  order to gain insight into the macroscopic behaviour of gas interacting with 
electric and magnetic fields, while its degree of ionization is changing, the one- 
dimensional unsteady flow of gas with temperature-dependent conductivity is 
investigated. A simple continuum model is used for the gas. It is assumed to be 
compressible and to obey polytropic gas laws and its conductivity is supposed to 
change discontinuously at a critical temperature. Particular attention is devoted 
to the various types of transition boundaries which can occur as the conductivity 
changes, and it is shown that complete flow patterns can be constructed with 
these as elements. A wide variety of transitions are possible and some of these 
have remarkable properties. For example, it  is shown that discontinuous de- 
ionising fronts can exist and are expansive in nature. This contrasts sharply with 
the situation in conventional gas dynamics and magneto-gasdynamics where 
only compressive discontinuities can exist. 

1. ktroduction 
The purpose of this paper, which first appeared as a R.A.R.D.E. report 

(Butler 1963), is to study the interaction between a magnetic field and a gas in 
which ionization or de-ionization processes may be taking place. For simplicity, 
the discussion is restricted to purely one-dimensional unsteady flows with trans- 
verse magnetic fields, and, to avoid the complexity of the ionization process 
in a real gas (see, for example, Goldsworthy 1958)) an idealized model is used. 

The model is that used by Kulikovsky & Lyubimov (1959) for their work 
on the structure of ionizing shock waves. It is assumed that, at temperatures 
below some critical value l'*, the gas is non-conducting but a t  this temperature 
it becomes highly conducting, so that for T > T* it  can be regarded as a perfect 
conductor. It is also assumed that there is no change in the internal energy 
of the gas as it ionizes, so that the same polytropic gas laws can be used 
throughout. 

A discontinuous conductivity-temperature relation does not appear to be too 
serious an approximation to the behaviour of a real gas, since the conductivity 
of most gases rises very rapidly once a significant amount of ionization has 
occurred. Furthermore, it  is reasonable to expect that using a discontinuous 
relation, in place of a steep but continuous one, will not seriously alter the overall 
behaviour of the gas, but will merely concentrate conductivity changes, which 
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might otherwise be spread over small bands. The neglect of ionization energy is 
open to more serious objection, since this involves a change in the overall con- 
servation laws on which the flow equations are based. However, the effect of 
ionization energy and the increase in particle density can probably be simulated 
by allowing the adiabatic index y to vary. This is unlikely to affect the arguments 
seriously. 

The equations governing the one-dimensional motion of a gas interacting 
with magnetic and electric fields are set out in 3 2. It is assumed that the particle 
velocity, magnetic field and electric field vectors are mutually perpendicular. 
There are three fluid-dynamic equations, which impose the conditions of con- 
servation of mass, momentum and energy on the fluid. In  addition there are 
Maxwell’s equations and Ohm’s law which must be satisfied by the magnetic and 
electric fields and the current density. The non-relativistic forms of the fluid- 
dynamic equations are used, but, when the gas is not fully conducting, the dis- 
placement-current term in Maxwell’s equations is retained. This procedure is 
not completely consistent since the non-relativistic equations are only valid for 
v < c,,, where v is a typical fluid velocity and co is the speed of light, and under 
these conditions displacement currents may be neglected in general. However, 
it is found that electromagnetic waves have a crucial effect in some cases and they 
must therefore be included. It should always be borne in mind that the equations 
derived are only valid in the limit as co+co. 

In the non-conducting regime the flow and the magnetic field are uncoupled. 
The motion of the gas is governed by the conventional equations of unsteady 
flow and the Maxwell equations govern the electric and magnetic fields. The 
governing equations in the fdly-conducting regime are the magneto-gasdynamic 
equations for a perfectly conducting gas and are fully coupled. 

Although the conductivity-temperature relation is assumed to be discontinu- 
ous, all transitions between the fully-conducting and non-conducting regimes 
are not necessarily instantaneous. In  reality the relation between conductivity 
and temperature is not discontinuous but merely steep. In  these circumstances a 
small change in temperature will produce a large change in conductivity, so that 
during a transition the temperature will remain approximately constant, while 
the conductivity changes. 

In order to make the discontinuous model self consistent, an additional flow 
r6gime must be introduced, which will approximately reproduce this behaviour 
during slow transitions between the non-conducting and the fully-conducting 
regimes or vice versa. In  this regime the temperature is constant and equal to 
the critical value, while the conductivity takes any positive value which is 
dictated by the governing equations. This leads to a consistent system of equa- 
tions since the freedom that is lost by imposing a fixed temperature is recovered 
by allowing the conductivity to be variable. 

The equations relevant to the non-conducting and fully-conducting r6gimes are 
well known. Both sets are hyperbolic. The isothermal regime is also hyper- 
bolic in spite of finite conductivity. This is not so surprising when it is remembered 
that the full magneto-gasdynamic equations with finite conductivity depending 
on the thermodynamic variables are also hyperbolic if the speed of light is finite. 
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The parabolic diffusion terms only arise as an approximation to electromagnetic 
wave propagation in the limit as co -+ cc. However, in the present case the two 
slower characteristics remain even when co -+ 00. 

Before the solution of a particular boundary-value problem can be attempted, 
the appropriate flow configuration must be determined. This is done by piecing 
together regions of different types of flow and matching them across suitable 
free boundaries. It is clearly important to know what types of boundaries are 
possible and what conditions apply across them. $93 and 4 of this paper are 
devoted to studying these boundaries. 

Free boundaries can be divided into two classes, those which allow discon- 
tinuities in the flow variables themselves and those which allow only discontinu- 
ities in derivatives. Boundaries belonging to these classes will be described as 
discontinuous and continuous respectively. If a particular type of boundary is to 
exist, it  must satisfy two requirements: First, it  must allow consistent solutions 
of the flow equations in its neighbourhood. This will usually imply that the velo- 
city a t  which it moves is, within certain limits, determined by the velocities 
corresponding to the characteristic curves in its neighbourhood. For continuous 
boundaries the second requirement is that the governing equations should allow 
a discontinuity in derivatives. Discontinuous boundaries must have a structure 
which satisfies more detailed physical equations which permit dissipation. 

It is well known that, in both the non-conducting and the fully-conducting 
rhgimes, continuous boundaries can occur at characteristics. However, in the 
case of a mixed-conducting and non-conducting flow these boundaries can also 
occur when T = T*. In  these cases the governing equations change discontinu- 
ously and there will normally be a corresponding change in derivatives. The 
second requirement is therefore satisfied. The implications of the first require- 
ment are considered in § 3. Electromagnetic-wave propagation plays a vital 
role in this analysis. 

Discontinuous boundaries can be of two types, those which move with the 
fluid and those which do not. Those of the first type are contact discontinuities. 
These can exist either with the same flow regime on both sides, or they can sepa- 
rate regions of different types of flow. Across contact discontinuities the flow 
velocity and the total pressure (thermodynamic plus magnetic) must be con- 
tinuous. For contact surfaces with non-conducting flow on both sides the mag- 
netic field must also be continuous. All possible types of contact discontinuities 
satisfy the consistency requirement. 

Two well-known types of discontinuity moving through the fluid can occur. 
These are conventional fluid-dynamic shocks with non-conducting fluid on both 
sides and shocks with fully ionized flow on both sides (Marshall 1955). Dis- 
continuities across which the gas changes fromnon-conducting to fully conducting 
or vice versa can also occur. The structure of these is studied in $4. This discussion 
is based, for concreteness, upon the Navier-Stokes equations for a viscous con- 
ducting fluid, and follows the same lines as that used by Kulikovsky & Lyubimov 
(1959). 

The arguments do not seem to depend vitally on the particular dissipation 
mechanism introduced. Indeed, as Kulikovsky & Lyubimov show in the par- 
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ticular case they consider, essentially the same results are obtained if heat 
conduction is used instead of viscosity. In principle it is also possible to include 
heat conduction and viscosity simultaneously, although this would lead to 
practical difficulties since solution curves in a 3-space would have to be considered. 
It seems likely that the conclusions are valid under conditions of greater generality 
than those for which they are proved. 

The study of the discontinuity structure shows that four distinct types of 
discontinuity are possible. The first is an ionization front or shock, with non- 
conducting gas moving with supersonic velocity relative to the front on the 
upstream side, and fully-conducting subsonic flow downstream. This shock is the 
one studied by Kulikovsky & Lyubimov (1959). The second type has non- 
conducting flow on both sides. Internally the temperature momentarily exceeds 
the critical value and currents flow, so that there is an overall increase in magnetic 
field. This type of front is effectively an arc moving in a magnetic field. The third 
and fourth types are de-ionizing fronts and are expansive rather than compressive 
in nature. In  both cases the density, pressure and temperature of the gas decrease 
while the entropy increases. The third type is subsonic relative to both the flow 
ahead and behind, and the magnetic field strengthens as the gas passes through. 
The fourth type is supersonic on both sides and involves a decrease in magnetic 
field. 

The jump conditions across conventional shocks are derived solely from the 
conservation laws for mass, momentum and energy, This is also true of shocks in 
highly conducting gases, except that the condition for conservation of transverse 
electric field is also required. Study of the structure of these shocks gives, a t  
most, restrictive inequalities, which the states on either side must satisfy. 
For instance, Marshall (1955) showed that if there is no component of magnetic 
field in the direction of propagation the transverse magnetic field must always 
increase across a shock in fully-conducting gas. For fronts of types 1, 3 and 3 
the study of the structure brings to light an additional relation between the 
states. This relation depends on the physical model used for the structure analysis. 
For the Navier-Stokes model it depends on the relative values of the diffusion 
coefficients for vorticity and magnetic field. 

It is fortunate that these relations exist, since without them it would be im- 
possible to obtain unique solutions to problems involving discontinuities. As 
it is, there are just the required number of jump conditions in each case and 
consistent solutions can be obtained. This feature seems to arise because there are 
different numbers of characteristics in the two regions to be connected. In  
the non-conducting regime there are five families of characteristics (the three 
characteristics of the flow equations plus the two characteristics of the electro- 
magnetic-wave equations) and in the fully-conducting regime there are four 
(the particle paths are counted twice, since there are two relations along them). 

The extra constraint coming from the structure properties arises because the 
magnetic field is not allowed to vary when the gas is non-conducting. This 
depends implicitly on the possibility of purely electromagnetic waves in non- 
conducting gas. Any non-uniformity in the magnetic field would result in electro- 
magnetic-wave propagation tending to reduce the non-uniformity. If the velocity 



One-dimensional flow in an  ionizing gas 6 

of light is effectively infinite, this adjustment takes place instantaneously. Elec- 
tromagnetic waves, therefore, provide an additional mechanism for transition 
from one equilibrium state to another. There are altogether five mechanisms 
for readjustment; diffusion of mass, momentum, energy and magnetic field and 
electromagnetic waves. In  the case of a conventional shock it does not matter 
how the available mechanisms are used (diffusion of mass, momentum and 
energy only in this case), since the same final state will be reached. In general, 
the gas will try to make the adjustment as quickly as possible. So it will start 
off by using principally the mechanism which allows adjustment to take place 
in the shortest distance (that is, the one with the smallest diffusion coefficient), 
the slower mechanisms will only be used when there is no alternative. For 
example, consider a conventional shock wave in a gas which allows diffusion 
of mass, momentum and energy, and suppose that the corresponding coefficients 
are D, v and K ,  and satisfy D, K < v. Adjustments to the mass and energy 
flow can take place much more quickly than adjustments to the momentum. 
As a result, the mass and energy fluxes will virtually remain in equilibrium 
throughout. Momentum equilibrium can only be attained comparatively slowly, 
but since it must eventually be reached, the overall effect will be the same as it 
would if the coefficients had different relative values. In  the case of an ionizing 
or de-ionizing shock, the situation is different because when the critical tempera- 
ture is reached, the magnetic diffusion mechanism is replaced by the electro- 
magnetic-wave mechanism or vice versa. There is also a change in the number of 
equilibrium conditions which the gas is trying to satisfy; the electrical equili- 
brium condition E+u x B = 0 is either gained or lost. The relative rates of 
adjustment alter the end states reached in this case. For a de-ionizing front, 
for example, once the gas becomes non-conducting, no further adjustment of the 
magnetic field is possible or indeed is needed, since electrical equilibrium is no 
longer necessary, and the amount of adjustment made before T = T* determines 
the final end state. 

In the final section a few simple boundary-value problems are discussed. 
These illustrate how flow configurations can be constructed using the boundaries 
described in the earlier sections of this paper. 

2. The equations 
Cartesian axes are chosen so that the particle velocity is parallel to Ox, 

the electric field and current vectors to Oy and the magnetic field to Oz. The 
components of these vector quantities are then 

u=(u,O,O), E=(O,E,O), J=(O,J,O) and B = ( O , O , B ) .  

The flow is assumed to be purely one dimensional with a/ay = 

are 

= 0. 
The equations governing the motion of the gas, assuming that it is polytropic, 

Pt+UP,+pu, = 0, (2.1) 

(2.3) 

(2.3) 

p(u, + uu,) +p, = BJ ,  

p f  + up, - a2(pl + up,) = (Y - 1)  J 2 / f ~ ,  
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where p is the density, a is the adiabatic sound speed and t~ is the scalar electrical 
conductivity. Maxwell’s equations and Ohm’s law must also be satisfied. These 
give 

(2.4) 

( 2 . 5 )  

where rationalized N.K.S. units are used and co is the velocity of light and p o  
the magnetic permeability. The term EJct in equation (2.5) will be neglected 
eventually in order to be consistent with the non-relativistic form of equations 
(2.1), (2 .2 )  and (2 .3) .  It is retained temporarily since it throws light on the 
physical nature of the problem. 

The conductivity CT is a given function of temperature T. It is assumed that 
the form of this function allows the temperature range to be divided into three 
regimes (figure 1). In  regime 1,  T < T* and cr c C T ~ ,  where the magnetic Reynolds 
number based on a,(,uua,UL) is small compared to unity. The flow is then 
effectivelynon-conducting. Inregime3, T > T* + ATand c > t~~wherepua;UL P 1 
and the flow is effectively ‘infinitely conducting ’. In  rkgime 2, T* < T < T* + AT 
and a1 < rr < a2 but AT/T* < 1 so that the flow is effectively isothermal. 

T* T*+AT T 

FIGURE 1. A typical conductivity- temperature relation 

In rBgime 1, J = 0 and the five differential equations (2.1) to (2.5) decouple 
into two sets, the unsteady-flow equations and the electromagnetic-wave 
equations. These equations involve five dependent variables p, u , p ,  B and E 
(a  may be eliminated by using a2 = yp /p )  and are hyperbolic with five families 
of characteristics. These characteristics are 

dx/dt = u t a,  on which dp i padu = 0, 

dxldt = u, on which dp - a2dp = 0, 

dxldt = +_ co, on which d 3  k - dE = 0. 
1 

CO 

(2.6) 
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In regime 2, T = T* and therefore p / p  = a constant (say C2). J and u are 
eliminated from equations (2.2) and (2.3) by using (2.5) to give a set of four 
differential and one algebraic equations for the five dependent variables p, u, p ,  B 
and E. These are: 

Pl + upx  +pu, = 0, i 

a2 

= c2 = r 
Solutions must also satisfy the restriction 

uB) < 0, 

> (8 .7)  

(2.8) 

since violation of this condition would imply negative conductivity. The 
equations ( 2 . 7 )  are hyperbolic and have four families of characteristics, 

dxldt = 2 c,, 
on which 

c,(co F ufpdu _+ coc2ap 

1 

P O  

+ - - - [ ( _ + ~ , C ~ - U ( C ~ ~ U ) ~ } B - ( C ~ - ( C ~ T  u ) ~ } E ]  [dB2 (l /co)dE] = 0, (2.9) 

and d.r/dt = u + A ,  on which hpdu + d p  = 0, where h is either root of 

h2(E - uB)/C2 + AB - (E  - uB) = 0. 

Both roots are always real. It should be remembered that equation (2.9) 
is only meaningful in the limit as co + co. 

In regime 3, CT is very large, and in the limit as c, --f co the well-known equations 
for a perfectly-conducting gas are obtained. These consist of four partial dif- 
ferential equations and one algebraic equation (E - uB = 0) for the five depen- 
dent variables (p, u,p, B,  E). There are three characteristics, on one of which 
(the particle path) there are two differential relations between the dependent 
variables : 

dx/dt = u & c ,  on which (Blp,,) dB + dp _+ p c d u  = 0 where c2 = a2 + B2/p,u,, 

and dxldt = u, on which dp - a2dp = 0 and (dB/B) - (dp/p) = 0. 

In each regime the total number of characteristics and algebraic relations 
is the same as the number of dependent variables. In  principle, therefore, it  is 
possible to solve complete initial-value problems for regions in which only 
one regime occurs. 
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3. Continuous transitions 
Continuous transitions from one regime to another can occur across free 

boundaries at which T = T*. A t  such boundaries it is assumed that the fivc 
dependent variables ( p ,  u, p ,  B, E )  are continuous but J and (+ may be discon- 
tinuous. Considerable information about these boundaries can be obtained by 
adopting the following principle: flow patterns can only occur if they allow all 
the characteristic and algebraic conditions of the relevant regimes and complete 
initial data for p ,  u, p ,  B and E and the initial velocities of any free boundaries 
to be satisfied consistently. In  order to test particular flow patterns it is assumed 
that a necessary condition for consistency is that it should be possible to devise a 
construction for the solution using all the relevant characteristic relations. 
The procedure used is illustrated by the following particular case. In  essence 
it is similar to that used by Kontorovich (1958) to investigate the 'stability' 
of magneto-gasdynamic shocks, but the viewpoint is different. 

Consider the configuration illustrated in figure 2. The heavily drawn curve 
represents the path of a transition from regime 1 to regime 3. Ahead of the 
transition (above the boundary in the figure) the flow satisfies the conditions 
for regime 1, while behind the boundary the flow is regime 3. Suppose that at  
t = to, p ,  u, p ,  B,  E and the velocity of the boundary a t  P' are given, and the solu- 
tion at  t = to + At is required. The solution at points whose domains of dependence 
are entirely within a single regime can be computed consistently since the number 
of characteristic and algebraic conditions is the same as the number of dependent 
variables. At the point P on the boundary there are six unknowns p ,  u, p ,  B,  E 
and U ,  where U is the velocity of the boundary. These variables must satisfy 
two independent algebraic relations : 

T = T", 

and E-UB = 0. 

The characteristics through P are shown in figure 2 for the case 

u+a < U < u + c .  

The arrowheads indicate the direction of increasing t along the characteristics. 
CPG is the particle path, BP and DP are the characteristics dxldt = u +  a ,  
AP and HP are dxldt = _+ co, EP is the characteristic dxldt = u f c  and PP 
is dxldt = u - c  in regime 3. Five of these characteristics AP, BP, CP, DP and 
EP approach P as t increases, and on these curves the characteristic conditions 
can only be satisfied by adjusting the variables at P,  since the variables are given 
at A ,  B, C,  D and E. Seven conditions in all must therefore be satisfied and since 
there are only six unknowns this is impossible in general. Therefore a continuous 
transition from regime 1 to regime 3 moving with velocity U such that 

u + a  < U < u+c 

does not in general give a consistent solution. 
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Consider now the case when u < U < u + a. The new configuration is shown in 
figure 3. Along the characteristic PD on which dxldt = u+a, t increases as it 
leaves P. It is therefore no longer necessary to satisfy the condition on this 

FIGURE 2 .  An example of a discontinuous transition between rkgimes, which 
leads t,o an inconsistent solution. 

t 
FIGURE 3. An example of a discontinuous transition, which leads to 

a consistent solution. 

characteristic by adjusting variables at  P. As a result the variables at  P need 
only satisfy six conditions and, in general, a consistent solution can be obtained. 
If U is equal to one of the wave speeds then that characteristic condition must 
be counted. The cases U = u or U = u + a are therefore not possible. 
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By investigating all possible transitions in this way eight different types which 
lead to consistent solutions can be identified. Each type may face either forward 
or backward. The conditions under which each type can exist are shown in table 1. 

Nature of 
transition 

1 + 2  

2 + 3  

1 - 3  

3 + l  

3 + 2  

3 + 1  

TABLE 1. 

No. of Conditions on W 
types (assuming A, > 0 > A,) 

l o  nizing 

1 u < U < u+a, 

1 

2 

De - io nir ing 

1 

1 

and U < u+h2 

u + A ,  < u < u + c  

or u + c  < u < c g  

u+h,  < U < u + a  

u + A ,  < u < u + c  

u+a  < U < u + c ,  

u < U < u+a, 

> 
I 

or ' instantaneous ' 

Classification of continuous transitions. 

u > C" 

4. Discontinuous transitions 
The arguments of Q 3 show that a continuous transition is only possible if the 

velocity of the transition front is within a certain range. Suppose that the early 
stages of a solution involve a continuous transition front which steadily changes 
its velocity until it  reaches the end of this range. For example, the transition 
illustrated in figure 3 might be followed by a regime 3 compression wave which 
could accelerate it until U = u+a. If and when this stage is reached, it would 
no longer be possible to construct a solution with this continuous transition. 
One way in which the solution might be continued is by allowing the transition 
to divide into two with a regime 2 region interposed between the other two regions. 
Alternatively, the transition might subsequently take place across a dis- 
continuity . 

This situation is analogous to that which can occur in ordinary unsteady 
flow when a compression wave breaks to form a shock wave. In  this case charac- 
teristics of the same family tend to cross, so that there may be more than one 
through a particular point. When this happens it is no longer possible to find a 
consistent solution without introducing a shock. 

Discontinuous transitions may move with the gas so that they are contact 
surfaces. The conservation laws demand that, across such discontinuities, 
u,p  + B2/pp, and E should be continuous. In  addition, if the transition is between 
regimes 1 and 2 no current sheet can exist and B must also be continuous. When 
the other conditions, both characteristic and algebraic, are added i t  is found 
that in all cases consistency is just satisfied. 

Discontinuous transitions moving relative to the gas are studied by the method 
used by Germain (1960), Kulikovsky & Lyubimov (1959) and others. First 
of all small dissipative terms are introduced into the equations. These will have 
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the effect of smoothing the transition so that the variables change steeply and 
continuously. The transition is now brought to rest locally by a suitable change 
of variables. It is assumed that the equations in this frame are dominated by the 
derivatives across the transition and the dissipative terms, so that steady- 
flow equations including these terms are adequate. 

Dissipation is introduced by including viscosity terms from the Navier- 
Stokes equations and the effects of finite conductivity. The resulting equations 
are 

(4.1) 

(4.2) 

Ex = 0, (4.4) 
(4.5) 

pu = Cl, (4.6) 

(4.7) 

- Bx/po = J = g(l2 - uB). 
Equations (4.1), (4.2), (4.3) and (4.4) are integrated once to give 

pu2 + p  + B2/2po = +pvuX + (72, 

(4.8) 

E = const., (4.9) 
where C;, C2 and C, are constants. p and p are eliminated from equations (4.6), 
(4.7) and (4.8). Which leads to 

From (4.5) B x = -  P o 4 E - W  (4.11) 

Equations (4.10) and (4.11) are ordinary differential equations for u and B 
( E  is a constant). 

The only transitions that are of interest are those which link two uniform 
states, corresponding to solutions of (4.10) and (4.11) which start and end at  
points where B, and u, are zero. The points in the (B, u)-plane at  which ux = 0 
lie on the curve 

EB yC2u yB2u +- = 0. (4.12) 
2 c, 2Po Cl 

B, is zero either on the hyperbola 

E-UB = 0, (4.13) 

or where cr = 0, that is T < T". The curve T = T" corresponds to pip = C2. 
The equation of this curve in the (B, u)-plane is obtained by using equations 
(4.6), (4.7) and (4.8) to expressp andp in terms of u and B. It is 

ClC2 B2u EB 
~U2C1---+------uC2+C3 = 0. 

Y-1 2PO Po 
(4.14) 
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The curves u, = 0,  B, = 0 divide the (B, u)-plane into a number of regions 
in which the signs of u, and B, are known. The curve T = T* further subdivides 
these regions with B, = 0 for T < T*, and B, $. 0 for T > T". The relative posi- 
tions and shapes of the curves depend on the constants C,, C,, C, and E. A par- 
ticular case is illustrated in figure 4. Only the positive quadrant of the (B, u)- 
plane is considered, since there are no relevant solution curves on which B or u 
change signs and cases where either u and or B are negative throughout are 
essentially the same as those with positive u and B. The point A is a saddle point 
and the nature of the solution curves in its neighbourhood are illustrated on the 
figure. 

U 

B 
FIGURE 4. The behaviour of derivatives of u and R deduced froin 

the structure equations. 

The points L, M and N shown in figure 4 are the points on the curve uz = 0 
where u is equal to the wave speed in one of the three r6gimes. L is the point 
at  which u = a. At this point dB = 0 along u, = 0. M is the point where u = c. 
Geometrically i t  is the point where one of the family of curves UB = const., 
touches u, = 0. iV is the point a t  which u = -A ,  and is also the point where a 
member of the family of curves T = const. touches u, = 0. 

There seem to be four distinct types of solution curve satisfying the required 
conditions. Three of these are illustrated in figure 5. The first is represented by 
the curve BA. This is the solution discussed by Kulikovsky & Lyubimov (1  959) 
and by Soubbaramayer (1962). The gas is initially un-ionized and at first the 
magnetic field does not change while part of an ordinary gasdynamic shock 
transition takes place. At B' the gas reaches the temperature T* and starts to 
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ionize. Over the remaining part of the solution curve both the velocity and the 
magnetic field change. At both of the end points B and A ,  u, = B, = 0. For 
any set of values of C,, C,, C,  and E there is a unique starting-point B which leads 
to a solution reaching A.  Ahead of the transition u > a and behind it u < c. 

The second type of solution is represented by the curve DE. At D the gas 
is un-ionized. It passes through part of a gasdynamic shock until it reaches 
T = T* at G. Subsequently current flows and the magnetic field increases. 
This increases the magnetic pressure and eventually causes the thermal pressure 

I - r 
B 

& k l ~ R E  5 .  Three solution curves for the structure equations corresponding 
to transitions of types 1, 2 and 3. 

and temperature to reduce so that the gas de-ionizes as the solution curve re- 
crosses T = T*. The velocity then increases with the magnetic field stationary 
until the condition u, = 0 is reached at E. This transition is an arc moving through 
a magnetic field with un-ionized gas on either side. There is a relation between 
the positions of D and E on the uz = 0 curve. At D, u > a and at E ,  u < a. 

The third type is represented by the curve AC. Initially the gas is fully ionized 
(r6gime 3). The solution leaves the saddle point A along a unique path with velo- 
city and magnetic field increasing and temperature decreasing. When T = T* 
is reached the gas de-ionizes and the velocity increases until the conditions at the 
point C on the u, = 0 curve are attained. For any set of values of C,, C,, C, 
and E there is a unique position for the point C. At A ,  u < a and at C, u < a. 

The fourth type of transition is shown in figure 6. (The axes are omitted for 
convenience.) The gas starts a t  H in regime 3 and the end state is at K where 
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T = T* and u, = 0. The point H is a nodal point of the solution curves and K is a 
saddle point. Therefore the boundary conditions, that H is on u,= 0 and that 
K is on u, = 0 and T = T*, are just suacient to give a unique solution. Through 
this transition the gas passes from regime 3 to  either rbgime 1 or 2. Ahead 
u > c, and behind u < -Al. 

B 

FIGURE 6. A solution curve corresponding to a transition of type 4. 

Equations (4.6), (4.7), (4.8), (4.9) must be satisfied by both the end states 
(pl, ul, p l ,  B,, El)  and (p,, u,, p, ,  B,, E,) with u, = B, = 0. This gives four con- 
servation relations between the end states : 

El = E,. 

In addition to these conditions the end states must satisfy any algebraic coii- 
ditions relevant to the flow regimes to which they belong and internal structure 
conditions if the transition is of types 1, 2 or 3. 

The procedure described in $ 3  can be applied to these four types of discon- 
tinuity. The results are summarized in table 2’. It is found that types 1, 2 and 3 
transitions can exist whenever the structure conditions are satisfied. Type 4 
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can exist in two forms, either as a 3 -+ 1 transition or as a 3 -+ 2 transition. In 
the second caw, conditions behind it must be precisely sonic (u = -A, in the 
steady frame). 

Conditions Conditions 

1 1 + 3  U > u+a u < u+c 
I 1 + 1  U > u+a U < u+a 
3 3 + 1  u < u+c U < u + a  
4 Either 3 .+ 1 u > u+c U >u+a 

Type Rhgimes ahead behind 

> 

or 3 + 2  u > u+c u = u+h, 

TABLE 2.  Classification of shock-type transitions. 

5. Boundary-value problems 
Theinformation obtained in $$3 and 4 can be used, in conjunction with 

knowledge of the behaviour within the individual regimes, to predict flow 
patterns for particular boundary-value problems. Since there are eight different 
types of continuous transitions and four types of discontinuities, in addition to 
the various continuous waves and shock waves which are possible in the individual 
regimes, many types of flow pattern are possible. 

As an example, consider the following problem. A hot ionized gas (T > T*) 
is confined in a rectangular tube between the poles of a magnet. It is assumed 
that the cross-section of the tube is much greater in a direction perpendicular to 
the magnetic field than it is in a direction parallel to the field, so that one-dimen- 
sional conditions may be assumed. It is also assumed that the magnetic field 
in the gas is initially uniform. One end of the tube is closed by a perfectly con- 
ducting piston which is initially at rest and is instantaneously accelerated a t  
t = 0 and subsequently moves away from the gas a t  a constant velocity Q. 

Various flow patterns may result depending on the values of the dimensionless 
parameters Q/C, B;/popoa2,, and &/ao. If Q is sufficiently small a simple regime 3 
expansion wave moves into the gas, followed by a uniform flow region. This is 
illustrated in figure 7. For larger values of Q this flow pattern is not possible since 
the temperature of the gas decreases through the expansion and for sufficiently 
large values of Q would drop below T = T*. For these values of Q a second type 
of flow results. This is illustrated in figure 8. The gas fh t  passes through a regime 
3 expansion, it then passes through a discontinuous transition to rBgime 1 (type 4 
in table 2). This transition is followed by a uniform flow region, then a regime 1 
expansion and finally a second uniform region. The temperature ahead of the 
transition is greater than T* and it moves a t  precisely the wave speed ahead of it, 
so that it is also a characteristic of the regime 3 region. As Q is increased further, 
the discontinuity strengthens. The effect of the piston velocity is not communi- 
cated to the transition by sound waves in the region behind it, since these waves 
are too slow. There is a direct electromagnetic coupling between the conducting 
piston and the gas ahead of the transition. If Q is increased further, the condition 
that no magnetic field lines can pass through the perfectly conducting piston 
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FIGURE 7. The flow pattern resulting when hot gas is expanded by 
moving a conducting piston at  a low velocity. 

Expansion 
(rigime 3) 

(regime 1) 

X 

Expansion 
(rigime 1) 

f r  

Uniform flow ’ (riggime 1) 

J 

Piston 
FIGURE 8. The flow pattern resulting when the gas is expanded 

moderately fast conducting piston. 
by a 
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requires lower magnetic fields between the piston and the transition. This in turn 
requires a stronger transition. Eventually a stage is reached when the T = T* 
curve touches the u, = 0 curve in the (23, u)-plane diagram describing its struc- 
ture, i.e. the points H and K of figures 4 and 6 coincide. No further increase 
in strength can occur. However, this is also the stage at which the type 4 tran- 
sition can be regarded as a regime 3 to regime 2 transition, so for larger Q a regime 2 

I . 1  

Expansion 
(rkgime 3) 

t. Discontinuity (type 4) 

Expansion 
(rkgirne 2) 

Uniform flow 
(rkgime 2) 

\ c 

t 

continuous transition 

Expansion 
(rkgime 1) 

Uniform flow 
(regime 1) 

FIGURE 9. The fully-developed flow pattern resulting when the piston 
is fast moving. 

region can occur behind the transition. This situation is illustrated in figure 9. 
The flow passes through a regime 3 expansion, a 3 -+ 2 discontinuity, a regime 2 
expansion, a uniform regime 2 region, a continuous 2 --f 1 transition followed 
immediately by a regime 1 expansion and finally a uniform regime 1 region. 

There are thus three basically different flow patterns resulting from this 
simple boundary-value problem. In the case illustrated in figures 8 and 9, and 
for certain values of the parameters, the regime 1 expansion may expand the gas 
completely so that the final region becomes a vacuum. It is also possible that the 
discontinuous transition may move completely through the regime 3 expansion. 
In all, therefore, there are nine distinct patterns. 

2 Fluid Mech. 23 



18 D. 8. Butler 

The case where the piston accelerates slowly can also be considered. A typical 
flow pattern for this case is shown in figure 10. Initially a simple regime 3 expan- 
sion wave moves into the gas. When the temperature on the piston decreases 
to T* at the point A a discontinuous transition forms. Initially this has zero 
strength and is moving a t  the wave velocity u+c. As the piston accelerates 
further, it interacts magnetically with the gas in this front and drives the front 

FIGURE 10. The flow pattern resulting when a conducting piston is 
accelerated continuously. 

into the expansion. A regime 1 expansion moves into the gas from the piston and 
from the rear of the front. At the point B the front has accelerated so much that 
its velocity is sonic relative to the.rt5gime 2 wave speed behind it. At this point a 
continuous front originates, moving more slowly so that it is overtaken by the 
ritgime 1 expansion. The original front continues as a regime 3 -+ 2 front and a 
region of regime 2 flow exists between them. If the piston subsequently reaches 
a steady velocity the 3 --f 2 front will be asymptotic to one of the regime 3 charac- 
teristics and the 2 --f 1 front will be asymptotic to a regime 1 characteristic, and 
as t --f co the flow becomes that depicted in figure 9. 
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The flow with a non-conducting piston can also be considered. In  this case there 
is only one boundary condition on the piston, u = -&. A unique solution can 
only be obtained if another condition involving B and or E is given for x < 0. 
A suitable condition can be obtained if it is assumed that the tube is ‘strapped’ 
at effectively x = -a so that the magnetic field is constant on the side of the 
piston further from the gas. A typical flow pattern that can result if the piston is 
steadily accelerated is shown in figure 11. 

Current 
sheet on piston 

FIGURE 11. The flow pattern for a continuously accelerating 
non-conducting piston. 

Initially a regime 3 expansion moves into the gas. This not only accelerates 
the gas to the piston velocity but reduces the magnetic field below the ambient 
value. A current sheet forms on the surface of the piston in order to match the 
field t o  ambient conditions behind the piston, When the point A is reached the 
expansion is strong enough to de-ionize the gas. At this point a regime 3 --f 3 
shock (see Marshall 1955) and a type 3 , 3  + 2 transition start. Both these fronts 
initially have finite strengths which are such that their effects on the velocity 
cancel (the 3 -+ 3 shock compresses the gas which is then re-expanded by the 3 --f 1 
transition) but their combined effect on the magnetic field replaces that of the 

9 n  
Y - I  
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current sheet which exists up to A .  The shock is supersonic relative to the regime 3 
expansion ahead and therefore overtakes part of the expansion and is weakened. 
The 3 -t 1 front is subsonic relative to the regime 1 flow behind it. As the piston 
accelerates further the front is overtaken by expansion waves which increase its 
strength. The 3-t 1 front is also subsonic relative to the regime 3 flow ahead of 
it,  and can therefore send waves ahead which drive the 3 + 3 shock. If  the piston 

FIGURE 12. The fully-developed flow pattern for a non-conducting piston. 

ultimately attains a uniform velocity the 3 --f 3 shock becomes indefinitely weak- 
ened. The final flow pattern is that depicted in figure 12. This represents the fully- 
developed flow pattern. Other flow patterns arise if the piston velocity is not 
sufficiently large. 

The two examples described above illustrate an important difference between 
the two possible types of discontinuous transition from regime 3 t o  regime 1 
(table 2). In  the conducting-piston case the front is driven electromagnetically 
and a type 4 front results and in the non-conducting piston case the front is 
driven by expansion waves in the gas and a type 3 front is formed. 
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